FATE
FATE copied to clipboard
官方示例pipeline训练IMDB.CSV是否可以用api进行上传?
这个例子我跑通了https://github.com/FederatedAI/FATE/blob/v1.11.3/doc/tutorial/pipeline/nn_tutorial/Bert-example.ipynb
然后我在fateboard下载了这个任务的dsl和conf两个文件,尝试使用flow data upload 和flow data submit进行提交任务训练 发现报错
ValueError: Invalid file path or buffer object type: <class 'fate_arch.computing.standalone._table.Table'>
但是似乎实现逻辑都是fate_client 所以我尝试修改配置文件也还是报错 无奈来求助了 感谢
uoload.json
{
"file": "/opt/IMDB.csv",
"head": 1,
"partition": 10,
"work_mode": 1,
"table_name": "imdb",
"namespace": "experiment"
}
dsl.json
{
"components":{
"nn_0":{
"output":{
"data":[
"data"
],
"model":[
"model"
]
},
"input":{
"data":{
"validate_data":[
"reader_1.data"
],
"train_data":[
"reader_0.data"
]
}
},
"provider":"fate",
"module":"HomoNN"
},
"reader_0":{
"output":{
"data":[
"data"
]
},
"provider":"fate_flow",
"module":"Reader"
},
"reader_1":{
"output":{
"data":[
"data"
]
},
"provider":"fate_flow",
"module":"Reader"
},
"eval_0":{
"output":{
"data":[
"data"
]
},
"input":{
"data":{
"data":[
"nn_0.data"
]
}
},
"provider":"fate",
"module":"Evaluation"
}
}
}
job_config.json
{
"component_parameters":{
"role":{
"host":{
"0":{
"reader_0":{
"table":{
"name":"imdb",
"namespace":"experiment"
}
},
"reader_1":{
"table":{
"name":"imdb",
"namespace":"experiment"
}
}
}
}
},
"common":{
"nn_0":{
"loss":{
"reduce":null,
"loss_fn":"BCELoss",
"size_average":null,
"weight":null,
"reduction":"mean"
},
"optimizer":{
"weight_decay":0.001,
"amsgrad":false,
"optimizer":"Adam",
"lr":0.001,
"betas":[
0.9,
0.999
],
"eps":1E-8,
"config_type":"pytorch"
},
"nn_define":{
"0-0":{
"param":{},
"module_name":"bert_",
"class_name":"BertClassifier",
"layer":"CustModel",
"initializer":{}
}
},
"trainer":{
"param":{
"batch_size":16,
"data_loader_worker":8,
"epochs":2
},
"trainer_name":"fedavg_trainer"
},
"dataset":{
"param":{
"tokenizer_name_or_path":"bert-base-uncased"
},
"dataset_name":"nlp_tokenizer"
},
"torch_seed":100
},
"eval_0":{
"eval_type":"binary"
}
}
},
"dsl_version":2,
"role":{
"host":[
9999
]
}
}