Digital2Slave
Digital2Slave
@chinmayanandValtech you need to create your custom jni function in **yolov8ncnn.cpp** like the following code snippet: ```java JNIEXPORT jobject JNICALL Java_cn_epbox_cv_1segx_CvSegx_getPicSegmentResult( JNIEnv *env, jobject p_this, jobject assetManager, jobject bmp, jstring...
> 你好,大神!yolov8-obb模型转ncnn模型,需要修改 head.py 和 block.py的那些地方,才能转换成功?谢谢!!! > > 期待您的回复!!! https://docs.ultralytics.com/tasks/obb/#export
1. refine your custom dataset label without missing. 2. fine tuning your segment model with your custom dataset. 3. set `prob_threshold` and `nms_threshold ` values according to your measurements.
Dear BlakeZim, Thanks for your issue. I'm very appreciate it. Please feel free to open a pull request.
**num_neighbors** is just the radius of a sliding window. Usually, according to **Imagescale** value, a sliding window is a rectangle window, which may be `5*5`, `3*3`, etc.
If **num_neighbors = Imagescale/2** is work correctly. When **Imagescale = 2, num_neighbors = 1**, and the sliding window may be smaller than `3*3` which may not work. In my code...
For your own model, please check out the load parameter of model. And refer https://github.com/Digital2Slave/ncnn-android-yolov8-seg/wiki/Convert-yolov8%E2%80%90seg-to-ncnn-model-step-by-step ``` yolov8.load_param("models/yolov8s-seg.param"); yolov8.load_model("models/yolov8s-seg.bin"); ```
what's the error message of logcat ?
``` 2023-10-12 02:06:57.371 15240-15260 OpenGLRenderer com.tencent.yolov8ncnn E fbcNotifyFrameComplete error: undefined symbol: fbcNotifyFrameComplete 2023-10-12 02:06:57.371 15240-15260 OpenGLRenderer com.tencent.yolov8ncnn E fbcNotifyNoRender error: undefined symbol: fbcNotifyNoRender ``` Refer: - https://github.com/jonbhanson/flutter_native_splash/issues/478 - https://stackoverflow.com/questions/70882079/android-app-stop-immediately-when-running-on-android-11-only-without-logcat-mess
@wsurer 最新版本的话,还是用Method 2可以的。不过,涉及的JNI代码,我还没同步。你可以参考[Method 2](https://github.com/Digital2Slave/ncnn-android-yolov8-seg/wiki/Convert-yolov8%E2%80%90seg-to-ncnn-model-step-by-step) ``` ncnn::Extractor ex = yolov8.create_extractor(); ex.input("images", in_pad); ncnn::Mat out; ex.extract("output0", out); ncnn::Mat mask_proto; ex.extract("output1", mask_proto); ```