StyleTransferTrilogy icon indicating copy to clipboard operation
StyleTransferTrilogy copied to clipboard

风格迁移三部曲

Results 11 StyleTransferTrilogy issues
Sort by recently updated
recently updated
newest added

你好,请问可以分享一下已经训练好的任意内容任意风格的的pytorch模型吗?谢谢

Hi, I'd like to leverage your package on MRI data set. My images have a common 3D shape of (width=170, height=170, depth=124). I'd like to transfer of the image style...

Traceback (most recent call last): File "Situation3.py", line 187, in print("random.choice(style_dataset)",random.choice(style_dataset)) File "/home/guest/cwy/miniconda3/lib/python3.8/random.py", line 291, in choice return seq[i] File "/home/guest/cwy/miniconda3/lib/python3.8/site-packages/torchvision/datasets/folder.py", line 153, in __getitem__ sample = self.transform(sample) File "/home/guest/cwy/miniconda3/lib/python3.8/site-packages/torchvision/transforms/transforms.py",...

您好,你的Keras版本里的已经训练好的权重文件的百度网盘链接已经失效,能否再发一次呢?谢谢

To achieve good visual resits, it needs 20 iterations of updates but during tesing speed the updates are not included

plt.imshow() will add something others to the image. How should I pre-process the generated image by the third algorithm before I can save it with scipy.misc.imsave. I tried minus the...

您好,Keras版本里的已经训练好的权重文件的百度网盘链接已经失效,能否再发一次呢?谢谢

Traceback (most recent call last): File "keras_version/3_situation.py", line 328, in g_model,loss_model,train_model,meta_model,loss_model_debug = get_Net(style_weight = style_weight,content_weight = content_weight,tv_weight =tv_weight) File "keras_version/3_situation.py", line 213, in get_Net content_feature_model = Model(vgg.input,layer_features) File "D:\installFile\Anaconda3\lib\site-packages\keras\legacy\interfaces.py", line...

util.py line 130 .132 reverse1 = K.reverse(inputs,-1) inputs = K.concatenate([reverse1[:,:,:,-self.padding_length:],inputs,reverse1[:,:,:,:self.padding_length]],axis = -1) reverse2 = K.reverse(inputs,-2) inputs = K.concatenate([reverse2[:,:,-self.padding_length:,:],inputs,reverse2[:,:,:self.padding_length,:]],axis = -2) maybe it is K.concatenate([reverse1[:,:,:,:self.padding_length],inputs,reverse1[:,:,:,-self.padding_length:]],axis = -1) @ypwhs