GraphConvSC
GraphConvSC copied to clipboard
Graph Convolutional Subspace Clustering: A Robust Subspace Clustering Framework for Hyperspectral Image
Graph Convolutional Subspace Clustering
This repository provides the implementations of EGCSC and EKGCSC model reported by "Y. Cai, Z. Zhang, Z. Cai, X. Liu, X. Jiang, and Q. Yan, “Graph convolutional subspace clustering: A robust subspace clustering framework for hyperspectral image,” IEEE Transactions on Geoscience and Remote Sensing, 2020"
If you would like to acknowledge our efforts, please cite the following paper:
@article{HSI-Clustering-GCSC-CAI-TGRS-2020,
title="Graph Convolutional Subspace Clustering: A Robust Subspace Clustering Framework for Hyperspectral Image",
author="Yaoming {Cai} and Zijia {Zhang} and Zhihua {Cai} and Xiaobo {Liu} and Xinwei {Jiang} and Qin {Yan}",
journal="IEEE Transactions on Geoscience and Remote Sensing",
note="doi: 10.1109/TGRS.2020.3018135",
year="2020",
}
Requirements
-
Python >= 3.5
-
Numpy <= 1.16.2
-
Munkres
-
SciPy
-
Scikit-Learn
-
Spectral Python (SPy)
Running
python demo.py
Dataset: HSI_Datasets/SalinasA_corrected.mat
original img shape: (83, 86, 204)
reduced img shape: (83, 86, 4)
x_patch tensor shape: (5348, 9, 9, 4)
final sample shape: (5348, 324), labels: [0. 1. 2. 3. 4. 5.]
============= EGCSC RESULTS =============
OA Kappa NMI 0.9993 0.9971 0.9991class accuracy: [1. 0.99702159 1. 1. 1. 1. ]
running time 42.296
============= EKGCSC RESULTS =============
OA Kappa NMI 1.0000 1.0000 1.0000class accuracy: [1. 1. 1. 1. 1. 1.]
running time 63.59
Reference hyper-parameter settings of EGCSC
===== =========== =========== ===========
data lambda K RO
===== =========== =========== ===========
SaA 10 30 0.8
InP 100 30 0.4 (13*13 patch)
PaU 1000 20 0.6
===========================================
Reference hyper-parameter settings of EKGCSC
===== =========== =========== =========== ==========
data lambda K RO gamma
===== =========== =========== =========== ==========
SaA 100 30 0.8 0.2
InP 1e3 30 0.8 10 (13*13 patch)
PaU 6*1e4 30 0.8 100
========================================================